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In the vicinity of a tipping point, critical transitions occur when
small changes in an input condition cause sudden, large, and
often irreversible changes in the state of a system. Many natu-
ral systems ranging from ecosystems to molecular biosystems are
known to exhibit critical transitions in their response to stochas-
tic perturbations. In diseases, an early prediction of upcoming
critical transitions from a healthy to a disease state by using
early-warning signals is of prime interest due to potential appli-
cation in forecasting disease onset. Here, we analyze cell-fate
transitions between different phenotypes (epithelial, hybrid-
epithelial/mesenchymal [E/M], and mesenchymal states) that are
implicated in cancer metastasis and chemoresistance. These tran-
sitions are mediated by a mutually inhibitory feedback loop—
microRNA-200/ZEB—driven by the levels of transcription factor
SNAIL. We find that the proximity to tipping points enabling
these transitions among different phenotypes can be captured
by critical slowing down-based early-warning signals, calculated
from the trajectory of ZEB messenger RNA level. Further, the
basin stability analysis reveals the unexpectedly large basin of
attraction for a hybrid-E/M phenotype. Finally, we identified
mechanisms that can potentially elude the transition to a hybrid-
E/M phenotype. Overall, our results unravel the early-warning
signals that can be used to anticipate upcoming epithelial–hybrid-
mesenchymal transitions. With the emerging evidence about the
hybrid-E/M phenotype being a key driver of metastasis, drug
resistance, and tumor relapse, our results suggest ways to poten-
tially evade these transitions, reducing the fitness of cancer cells
and restricting tumor aggressiveness.

critical transitions | indicators of critical slowing down | alternative stable
states | epithelial–hybrid-mesenchymal transition | cancer biology

B iological systems often display nonlinear dynamics and emer-
gent complex behavior and consequent multistability (1,

2). This nonlinear behavior in many cases leads to “tipping
points”—threshold values at which the system abruptly shifts
from one state to another, in response to small stochastic pertur-
bations (3). Such changes—referred to as “critical transitions”—
have been observed in multiple instances of ecosystems, climate,
financial markets (4–6), and more recently in many cases of
health and disease (1, 7, 8). The consequences of critical tran-
sitions are often large and undesirable, for instance, the switch
from a healthy state to a diseased state such as the onset
of type 2 diabetes (9) or that of depression (10). Moreover,
these transitions are often difficult to reverse, potentially due
to self-reinforcing positive feedback (11), thus predicting the
tipping points can be crucial for preventing such catastrophic
changes.

A critical transition is usually identified after a tipping point
and is difficult to predict beforehand, because the equilibrium
state of the system stays relatively unchanged until the tipping
point is reached (1). Thus, static observations may not be suf-
ficient to predict these abrupt transitions. Many indicators of
changing system dynamics have been suggested as early-warning
signals (EWSs) for the impending critical transitions and have

been experimentally shown to predict transitions in alterna-
tive states in yeast cultures (12) and plankton chemostats (13).
The most important clues for EWSs arise from “critical slowing
down” of the system as it approaches the tipping point. At the
onset of a tipping point, the rate of return of the system to the
current equilibrium state upon a random disturbance decreases
as the dominant eigenvalue approaches zero, and, eventually,
this equilibrium state is replaced by the alternative state. Thus,
under conditions of critical slowing down, the state of the sys-
tem at a given time becomes increasingly like that at a previous
moment, leading to higher temporal autocorrelation. Similarly,
due to moving into a shallower well closer to the bifurcation
point, the variance in data is increased (6). Hence, 2 canonical
statistical measures that are mostly used as EWSs to indicate
the proximity of a system to a tipping point are increasing vari-
ance and temporal lag-1 autocorrelation, AR(1) (3). Few other
measures used as EWSs are recovery rate/return time (13, 14),
skewness (15), conditional heteroskedasticity (16), spectral red-
dening (17), likelihood ratio (18), and interaction network-based
indicators (19).

While EWSs and critical transitions have been well studied in
ecological and climate systems, their application in predicting
disease onset is relatively recent and remains largely concep-
tual (1, 8, 11). Particularly, in cancer, critical transitions have
been predicted in metabolic reprogramming (20)—a hallmark of
cancer (21). Here, we investigate critical transitions and EWSs
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in another hallmark of cancer—invasion and metastasis.
Metastasis—the spread of cancer cells from one organ to
another—accounts for nearly all cancer-related deaths in solid
tumors (22). Despite extensive genomic efforts, no specific muta-
tional signatures have been yet identified for metastasis (23),
thus limiting the druggable targets to restrict metastasis. There-
fore, identifying tipping points for predicting and preventing
metastasis can be beneficial in curbing tumor aggressiveness.

Most solid tumors originate in epithelial organs where cells
do not typically migrate or invade, rather maintain tight cell–cell
adhesion and a specific tissue organization. Thus, to metas-
tasize, they typically undergo a phenotypic switch known as
epithelial–mesenchymal transition (EMT) where they lose cell–
cell adhesion and gain the traits of migration and invasion (24).
Cells undergoing EMT get launched into the bloodstream, and
also gain the ability to initiate new tumors at metastatic sites,
gain resistance against multiple drugs (25), and evade attacks
by the immune system (26). Thus, EMT provides multiple sur-
vival advantages to disseminated cells that typically undergo
a mesenchymal–epithelial transition (MET) to colonize distant
organs. Recent investigations, including ours, have identified
that EMT and MET need not be binary processes, instead cells
can undergo partial EMT/MET and stably maintain one or
more hybrid-epithelial/mesenchymal (E/M) phenotype(s) (24).
Importantly, cells in hybrid-E/M phenotype(s), i.e., those that
undergo partial EMT, maybe even more aggressive than cells
that have undergone “full EMT” (27, 28). However, no spe-
cific biomarker has been identified that can a priori predict the
onset of transitions among epithelial (E), mesenchymal (M),
and hybrid-E/M states. Thus, identifying EWSs for transitions
among these cell states can be a valuable contribution toward
restricting them.

Here, we identify critical slowing down-based EWSs in a
core regulatory network of EMT/MET. Three well-known
indicators—AR(1), variance, and conditional heteroskedasti-
city—work well to forewarn upcoming transitions among E,
hybrid-E/M, and M states, thus opening the possibility of con-
sidering EWSs as biomarkers to forewarn cancer metastasis. We
also calculate the basin-stability measure to evaluate the prob-
ability of occurrence of a particular state in various multistable
regions. A higher basin-stability measure corresponding to a par-
ticular state determines the larger possibility of attaining the
state in a multistable region. Complementing our basin-stability
measures with potential landscapes and phase diagrams for EMT
circuit, we identify how a monostable hybrid-E/M state can be
maintained and thus suggest mechanisms to avoid it. Overall,
our results highlight the ability to predict cellular transitions in
metastasis before they occur and may provide a dynamic bio-
marker to gauge metastatic potential.

Model
We consider an analytical model of microRNA (miR)-based
chimeric circuit developed by Lu et al. (29). The model incorpo-
rates the features of miR-mediated regulation in the translation-
transcription processes and captures the formation of various
miR–messenger RNA (mRNA) complexes by the bind-
ing/unbinding dynamics of miR and mRNA (Fig. 1A). The
deterministic equations of the circuit that govern the combined
dynamics of miR (µ), mRNA (m), and TF protein (B) are
given by:

dµ

dt
= gµ −mYµ − kµµ, [1a]

dm

dt
= gm −mYm − kmm, [1b]

dB

dt
= gBmL− kBB , [1c]

where gµ and gm are the synthesis rates of µ and m , respec-
tively, and gB is the translation rate of protein B for each m
in the absence of µ. kµ, km , and kB are the degradation rates
of µ, m , and B , respectively. Yµ, Ym , and L are µ-dependent
functions (29) denoting various effects of miR-mediated repres-
sion. Thus, Eq. 1 a–c represents that miR and mRNA can be
both produced at some fixed production rate and degraded with
first-order kinetics. Additionally, they can be degraded due to
miR–mRNA complexes (Ym , Yµ functions). The rate of produc-
tion of protein from mRNA can be affected by the function L
that denotes sequestration of mRNA by miR.

The corresponding chimeric tristable miR-200/ZEB circuit is
modeled as:

dµ200

dt
= gµ200H

s(Z ,λZ ,µ200)H s(S ,λS ,µ200)−Yµ200

− kµ200µ200, [2a]
dmZ

dt
= gmZH

s(Z ,λZ ,mZ )H s(S ,λS ,mZ )−YmZ − kmZmZ ,

[2b]
dZ

dt
=L− kZZ , [2c]

where H s is the Hill function (details are in SI Appendix, section
1: The Chimeric Circuit and section 2: The Deterministic Model).

As a stochastic description of Eq. 2 can accurately capture the
dynamics of the system, we derive the corresponding chemical
Master equation, which follows from the birth–death processes
(30). The Master equation is given by:

∂p

∂t
= gµ200(Z )

(
p(µ0

200 − 1,mZ ,Z )− p(µ0
200,mZ ,Z )

)
+gmZ

(
p(µ0

200,mZ − 1,Z )− p(µ0
200,mZ ,Z )

)
+kmZ

(
(mZ + 1)p(µ0

200,mZ + 1,Z )−mZ p(µ0
200,mZ ,Z ,µ0)

)
+kZ

(
(Z + 1)p(µ0

200,mZ ,Z + 1)−Zp(µ0
200,mZ ,Z )

)
+kµ200

(
(µ0

200 + 1)p(µ0
200 + 1,mZ ,Z )−µ0p(µ0

200,mZ ,Z )
)

+L(µ0
200,mZ )

(
p(µ0

200,mZ ,Z − 1)− p(µ0
200,mZ ,Z )

)
+

n∑
j=0

(
ΛjmZ (µ0

200,mZ + 1)p(µ0
200,mZ + 1,Z )

)
−

n∑
j=0

(
ΛjmZ (µ0

200,mZ )p(µ0
200,mZ ,Z )

)
+

n∑
j=0

(
Λjµ200(µ0

200 + j ,mZ )p(µ0
200 + j ,mZ ,Z )

)
−

n∑
j=0

(
Λjµ200(µ0

200,mZ )p(µ0
200,mZ ,Z )

)
,

[3]

where p(µ0
200,mZ ,Z ) is the grand probability function. Eq. 3 is

a birth–death process for the probabilities of the separate states
specified by the values of (µ0

200,mZ ,Z ). All of the terms appear
in the equation as pairs: 1) birth of a state (µ0

200,mZ ,Z ) due
to transition from other states (µ0′

200,m ′
Z ,Z ′) and 2) death due

transition from (µ0
200,mZ ,Z ) into other states. There are 10

such processes associated with birth and death of miR, mRNA,
and ZEB in our model (SI Appendix, section 3: The Stochas-
tic Model). We have simulated this Master equation with the
Gillespie algorithm (31) to obtain the stochastic trajectory of
the system (SI Appendix, section 3.B: Monte Carlo Simulation).
The stochastic trajectory of the system identifies the occurrence
of critical transitions between different phenotypes and using
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Fig. 1. (A) Schematic diagram of the miR-based chimeric circuit. (B) Bifurcation diagram depicting the changes in ZEB mRNA levels with variations in the
levels of SNAIL. The lowest levels of ZEB mRNA correspond to an E state, intermediate levels to a hybrid-E/M state (E/M), and the highest ones to an M
state, as shown by corresponding cartoons. Stable steady states are plotted by solid (blue) lines; unstable steady states, by dashed (red) lines. “K Molecules”
indicates 103 molecules. (C–F) An overview of critical transition in the circuit, which has multistability. (C and D) Schematic potential landscapes representing
2 stable states (i.e., E and hybrid E/M) of deterministic system: high resilience of the E state when it is far from the tipping point (C) and low resilience of
the E state close to a tipping point, when the system approaches a sudden shift from E to hybrid-E/M state (D). (E and F) Stochastic time series of the system
Eq. 2: with SNAIL (S) = 197,000 (far from the tipping point) (E) and with S = 207,000 (close to the tipping point) (F), respectively. (G and H) In the vicinity of
a tipping point, due to decreasing resilience, the system has a stronger memory for perturbation in comparison to that of far from a tipping point and that
are characterized by larger SD and AR(1). All of the other parameters for the circuit are given in the SI Appendix, Tables S1–S3.

critical slowing down-based EWSs, we can forecast such transi-
tions beforehand.

Results
Bifurcation-Induced Tipping Signs in Epithelial–Hybrid-Mesenchymal
Transition. A mutually inhibitory feedback loop between mem-
bers of ZEB transcription factor and those of miR-200 has
been postulated to govern EMT/MET; ZEB can drive EMT
by inhibiting cell–cell adhesion and cell polarity, while miR-
200 tends to maintain an E phenotype (24). Unlike mutually
inhibiting feedback loops where both players are transcription
factors, this loop is chimeric, i.e., it contains both transcrip-
tional and translational regulation (29, 32). First, we perform
the numerical bifurcation analysis (Materials and Methods) of
this deterministic tristable chimeric circuit Eq. 2 with varia-
tions in the SNAIL concentration (S) (Fig. 1B). The values
of all of the other model parameters of this circuit are pre-
sented in SI Appendix, Tables S1–S3. We denote 3 coexisting
stable states: high miR-200/low ZEB, low miR-200/high ZEB,
and medium miR-200/medium ZEB. These states correspond

to E, M, and hybrid-E/M phenotypes, respectively (24, 33). For
increasing levels of S, the circuit first exhibits monostable E state;
an increase in S leads to bistability between E and M states; a
further increase enables tristability between E, hybrid-E/M, and
M states; then bistability between hybrid-E/M and M states, and
finally a monostable M state. The existence of multistable regions
includes the appearance of saddle-node bifurcations and hys-
teresis loops that triggers the possibility of occurrence of catas-
trophic critical transitions in the presence of intrinsic stochastic
perturbations (34).

Since this feedback loop exhibits tristability, it may pass
through 2 critical points (or tipping points) and, therefore, can
reach 2 alternative states, one after another. A systematic anal-
ysis of such critical transition is commonly done by analyzing a
stochastic trajectory. In Fig. 1, we present a brief overview of
critical transition in the EMT circuit from pure E to hybrid-
E/M phenotype transition with variations in the levels of protein
SNAIL, when the system is far from or close to a tipping point
(Fig. 1 C and D). More specifically, larger variance and increased
AR(1) determine the proximity to a tipping point (Fig. 1 G

Sarkar et al. PNAS | December 26, 2019 | vol. 116 | no. 52 | 26345
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and H). With increasing SNAIL value, the system may experi-
ence 2 subsequent transitions, one from E to hybrid-E/M state
and another from hybrid-E/M to M state. However, decreasing
SNAIL value results in a direct transition from M to E state
which bypasses the hybrid E/M state.

EWSs for Transitions among E, Hybrid E/M, and M States. We began
our search for signals of critical slowing down by calculating
EWSs of critical transitions in datasets obtained from stochastic
simulations (Materials and Methods) of the chimeric circuit. The
stochastic trajectory (time series) representing ZEB mRNA lev-
els, with continuously increasing SNAIL value, exhibits sudden
transitions from E state to hybrid-E/M state and further hybrid-
E/M state to M state (Fig. 2A). The trajectory is generated with
time-varying signal SNAIL. The SNAIL level starts at 150,000
molecules at day 0 and then increases up to 250,000 molecules
at day 20. This increase in SNAIL levels can drive EMT in a
cell, i.e., moving from a monostable E region to a monostable
M region (Fig. 1B), and the timescale over which SNAIL lev-
els are varied are commensurate with those over which EMT is
observed (35, 36).

First, we evaluate the effectiveness of different EWSs to posi-
tively alarm an impending sudden catastrophic transition from E
state to hybrid-E/M state, by tracking the values of ZEB mRNA.
For EWS analysis, we consider a time-series segment before the
transition to hybrid-E/M state (Fig. 2B). To filter the possible
nonstationarities in the data, we subtracted a Gaussian-kernel
smoothing function across the time-series segment and used the
remaining residuals (Fig. 2C) for EWS analysis (37). We cal-

culate the variance and AR(1) (SI Appendix, section 4: Early
Warning Indicators) values with a rolling window having a length
of 60%, the length of the residual time-series segment, and found
both the variance and AR(1) values to be increasing (Fig. 2 D
and E). A concurrent increase in the EWS is a well-known indi-
cator of an upcoming critical transition (3, 5). The performance
of EWSs is, in general, known to be sensitive to the choice of
the filtering bandwidth used in the Gaussian-kernel smoothing
and also on the rolling-window size (38, 39). The bandwidth of
kernel smoothing determines the degree of data smoothing with-
out filtering the low frequencies from the data, and the choice of
rolling-window size depends on a trade-off between data resolu-
tion and reliability of the estimation of EWSs. Therefore, rather
than choosing arbitrary values, here we perform sensitivity analy-
sis of the filtering bandwidth and rolling-window size (Fig. 2 F–I).
For sensitivity analysis, the rolling-window size was varied from
25 to 75% of the data length in increments of 15 points, together
with variations in the filtering bandwidth ranging from 5 to
100 in increments of 10. For all of the possible combinations of
these 2 parameters, the observed trends in variance and AR(1)
were quantified using the nonparametric Kendall τ rank corre-
lation coefficient. A positive Kendall τ determines an increasing
trend in the EWS prior to a critical transition. To maximize the
estimated trends for the EWSs, we have used the sensitivity plot
to select a particular filtering bandwidth and window size. See
Fig. 2F for variance and Fig. 2H for AR(1) (for details, see SI
Appendix, section 4.B: Sensitivity Analysis). The frequency distri-
butions of the Kendall trend statistic for the variance and the
AR(1) are presented in Fig. 2 G and I, respectively.

A

B

C

D

E

F

G

H

I

Fig. 2. Critical transitions between different cell states of the regulatory circuit that are driven by forward change in the control parameter SNAIL, and
indicators of critical slowing down. (A) Transitions from E state to hybrid-E/M state and hybrid-E/M state to M state. Solid (blue) lines indicate stable steady
states, and dashed (red) lines indicate unstable steady states of the deterministic model. Stochastic time series is indicated by the fluctuating (black) line. (B)
Stochastic time-series segment of the system before the transition to hybrid-E/M state (a segment as indicated by the boxed region in A). (C) Residual time
series after applying a Gaussian filter (red curve in B is the trend used for filtering). (D and E) EWSs calculated from the filtered time series after using a
rolling window of 60% of the data length: variance (D) and AR(1) (E). (F–I) Sensitivity analysis of the filtering bandwidth and the rolling-window size used
to calculate the EWSs. (F and H) Contour plots reveal the effect of variable rolling-window size and filtering bandwidth on the observed trend in the EWSs,
variance (F) and AR(1) (H), for the filtered data as measured by the Kendall τ value. The triangles indicate the rolling-window size and bandwidth used to
calculate the EWSs. (G and I) Frequency distributions of Kendall τ values for variance (G) and AR(1) (I).
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The EWSs work well for capturing the transition from hybrid-
E/M state to M state (SI Appendix, section 5: Transition from
Hybrid-E/M State to M State and the Corresponding Early Warning
Signals and Fig. S1), suggesting that transitions in the forward
direction (i.e., increase in SNAIL) can be captured by stochas-
tic time series of ZEB mRNA. We generate the stochastic time
series of ZEB mRNA from the probabilistic model through
the Monte Carlo simulations (31), which incorporates intrinsic
cellular noise. We vary both the time and the parameter (the
number of SNAIL molecules) together, which carries the signa-
ture of critical slowing down while shifting to an alternative stable
state. We carried out our simulations for a period of 0 to 20 d
along with the simultaneous variations in the number of SNAIL
molecules, which varies from 150,000 to 250,000 molecules.

Next, we investigated whether these EWSs can also be
observed in backward transitions, i.e., with decreasing value of
SNAIL (Fig. 3). Due to the hysteresis and asymmetry in tran-
sitions in both directions (E to M vs. M to E), we observe a
sudden direct transition from M to E state (Fig. 3A) bypassing
the hybrid-E/M state. We consider a time-series segment prior
the transition to E state (Fig. 3B) and further used the resid-
ual time series for EWS analysis (Fig. 3C). Importantly, both
the EWS markers—variance and AR(1)—showed an increasing
trend closer to the tipping point for this transition from M to E
(Fig. 3 D and E). Reinforcing our previous analysis, these EWSs
were evaluated with specific choices of detrending bandwidth
and rolling-window size to maximize their trends. Put together,
these results highlight that the transitions among E, hybrid-E/M,
and M states can be predicted before they occur, using EWS
variance and AR(1).

Further, for the aforementioned 3 transitions, E to hybrid
E/M, hybrid E/M to M, and M to E state, we evaluate the robust-
ness of EWS trends to all of the rolling-window sizes depicted as
the distribution of the Kendall τ statistic around their median,
for both the “original” and “surrogate” time series (SI Appendix,
section 6: Box Plot and Fig. S2). In the case of original datasets,
most of the trends for AR(1) and variance are robust to rolling-
window sizes as the majority of the associated box plots stays
above the y-zero axes (40).

Conditional Heteroskedasticity Applied as EWSs. To evaluate the
robustness of the predictions made by the EWS variance and
AR(1), we calculate conditional heteroskedasticity—one of the
other measures known to forewarn critical transitions (16). Con-
ditional heteroskedasticity is indicated by the persistence in
the conditional variance of the error term in time-series mod-
els (41). The advantage of this indicator over others is that it
minimizes the chance of the occurrence of false-positive sig-
nals in time series that does not have any critical transition. To
calculate conditional heteroskedasticity, time series is modeled
as an autoregressive process, and the residuals are obtained.
The persistence of the conditional variance of the residu-
als then determines the conditional heteroskedasticity (see SI
Appendix, section 4.C: Conditional Heteroskedasticity for details
of the procedure). Before a critical transition, significant con-
ditional heteroskedasticity is expected to be visible in the time
series (16).

We consider the time-series segments before the critical tran-
sitions for both the cases; E to hybrid-E/M transition and MET
(Figs. 2B and 3B). Fig. 4A presents the squared residuals from

A

B

C

D

E I

H

G

F

Fig. 3. Critical transition between different cell states of the regulatory circuit that is driven by backward change in the control parameter SNAIL, and
indicators of critical slowing down. (A) Transition from M state to E state that bypasses the hybrid-E/M state. (B) Stochastic time-series segment of the system
before the transition to E state (a segment as indicated by the boxed region in A). (C) Residual time series after applying a Gaussian filter (red curve in B is
the trend used for filtering). (D and E) EWSs calculated from the filtered time series after using a rolling window of 80% of the data length: variance (D)
and AR(1) (E). (F and H) Contour plots reveal the effect of variable rolling-window size and filtering bandwidth on the observed trend in the EWSs, variance
(F) and AR(1) (H), for the filtered data as measured by the Kendall τ value. The triangles indicate the rolling-window size and bandwidth used to calculate
the EWSs. (G and I) Frequency distributions of Kendall τ values for variance (G) and AR(1) (I).
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an autoregressive lag-1 model applied to the time-series segment
of E to hybrid-E/M transition (Fig. 2B) plotted with the residuals
at the next time step. The slanted line is the regression line. The
positive correlation between the squared residuals at time step
t and time step t + 1 indicates conditional heteroskedasticity.
We also apply the cumulative number of significant Lagrange
multiplier tests (C ) to the time series (Fig. 4B). The cumulative
increases before the critical transition indicate that a significant
number of tests shows conditional heteroskedasticity in the time
series. For the transition to M to E state, we get similar results
(Fig. 4 C and D).

Stochastic-Potential and Basin-Stability Analyses Reveal Relative Sta-
bility of the Three Cell States. For a dynamical system, a potential
well represents the existence of a steady state. Here, we pro-
jected the stochastic potential of the system in ZEB mRNA–
miR-200 plane for different values of the parameter SNAIL
(Fig. 5). The lowest value of the potential corresponds to the
existence of a deep well and hence subsequently the existence of
a steady state. Here, for different SNAIL values, the stochastic
potentials clearly exhibit bistable/multistable states. Consistent
with the deterministic dynamics of the system (Fig. 1B), we
note the coexistence of E and M states (Fig. 5A), the coex-
istence of all of the 3 E, hybrid-E/M, and M states (Fig. 5B)
and the coexistence of hybrid-E/M and M states (Fig. 5C).
The details of the method used to calculate the stochas-
tic potentials are given in SI Appendix, section 7: Stochastic
Potential.

Given that the hybrid-E/M state has been proposed to be the
“fittest” for metastasis (42) and that we observed a relatively
larger region denoting the stability of hybrid E/M in the tristable
region (Fig. 5), we investigated the probability of attaining the
hybrid-E/M state in a tristable region in the presence of random
perturbations. This probability can be calculated by performing
basin-stability measure (43).

For a complex system, the basin stability is a measurement of
the stability/resilience of a steady state in a probability sense that
pivots on the volume of the basin of attraction. In other words,
it measures the likelihood of a return to a steady state after
random, nonsmall perturbations. Thus, for a high-dimensional
multistable system, it is a powerful tool to measure the basin

A C

DB

Fig. 4. Squared residuals from an autoregressive lag-1 model plotted with
the next squared residuals (A and C) and cumulative number of significant
Lagrange multiplier test (C) (B and D), both applied to the data presented
in Fig. 2B (for A and B) and Fig. 3B (for C and D), respectively. In A and B,
the black slanted lines are fitted regression lines at lag-1.

volume (SI Appendix, section 8: Basin Stability). For our sys-
tem, we observe multistability for different parameter values of
SNAIL (S). For S = 188,000 (Fig. 1B), the system has coexisting
E and M states. Basin stability measures that for a sufficiently
large set of random initial conditions, E and M states have prob-
abilities 0.91 and 0.09 of return to their original state, i.e., among
all random initial conditions 91% and 9% trajectories will reach
E and M states (Fig. 6A), respectively. For S = 200,000, the
system has probabilities 0.1, 0.76, and 0.23 of reaching to E,
hybrid-E/M, and M states (Fig. 6B), respectively, from a set of
random initial states. Similarly for S = 213,000, the correspond-
ing probabilities of return to hybrid-E/M state and M state are
0.62 and 0.38 (Fig. 6C), respectively. Further, increase in the lev-
els of SNAIL at S = 220,000 reduces the probability of attaining
hybrid-E/M state, which becomes 0.52, and the remaining 0.48 is
the probability of attaining the M state (Fig. 6D), indicating that
as we proceed from a bistable M–E/M phase to a monostable
M phase, the basin stability of E/M decreases, being concep-
tually consistent with the mean residence time analysis for this
circuit (44).

Hence, the basin-stability results suggest that an E state is
more stable in the bistable region containing both E and M
states, but the hybrid-E/M state is more stable for the 2 latter
cases. Thus, in the (miR-200/ZEB) loop, the chances of getting
a hybrid-E/M state seems relatively very high compared to the
other 2 states (SI Appendix, Fig. S3). This result is reminiscent
of mean residence-time calculations for E, hybrid-E/M, and M
states (44) and suggests that the hybrid-E/M state is not perhaps
as “metastable” as was initially postulated experimentally (24).

Identifying Mechanisms to Evade the Transition into Aggressive
Hybrid-E/M State. Next, we sought after mechanisms to evade
transition to a hybrid-E/M state, given its association with higher
aggressiveness and worse patient survival. We first identified
what mechanisms can lead to stabilized hybrid-E/M state. So far,
our results have identified monostable E, monostable M, and
other bistable and tristable regions, but not a monostable hybrid-
E/M state. Including other factors such as GRHL2, NUMB in
the network can enable the existence of a monostable hybrid-
E/M region (28). Here, we analyzed the parameter space of the
miR-200/ZEB feedback loop to identify regions enabling the
existence of a hybrid-E/M state as a monostable phase, with-
out adding more components in the network. We varied the
levels of SNAIL, and the threshold (half-maximal concentra-
tion) value of ZEB in the shifted Hill function corresponding
to ZEB inhibiting miR-200, and calculated the phase diagram
shown in Fig. 7. The different phases in the diagram are sep-
arated by 4 saddle-node bifurcation curves. We could identify
a large parameter region in which the monostable hybrid-E/M
phase appears—high levels of both SNAIL and the threshold
of ZEB (Fig. 7A). This result suggests that as the strength of
inhibition of miR-200 by ZEB is weakened, the progression to
a complete EMT may be halted and cells can stably occupy a
hybrid-E/M state for higher values of SNAIL (Fig. 7A). Con-
versely, as this inhibition is made stronger, the stability of the
hybrid-E/M state gradually decreases (Fig. 7C) and eventually
the hybrid-E/M state disappears (Fig. 7B). Here, the hybrid-
E/M state disappears when the systems response curve changes
from “folded” to “smooth,” in response to the variations in
the input condition. In fact, the folded response curve looks
like a typical first-order (i.e., abrupt) or discontinuous tran-
sition (Fig. 7C), however contains 2 unstable states and one
stable hybrid-E/M state which in general shows 2 stable and one
unstable states in most of the studies on critical transitions (45,
46). The smooth response curve corresponds to second-order
(i.e., continuous) phase transition that has only one unstable
state here (Fig. 7B), in contrast to a bistable system, which
has a stable state. Therefore, the dynamical mechanism behind
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A B C

Fig. 5. The potential landscapes of the genetic circuit in a 2-dimensional mRNA–miR plane for different values of SNAIL (S). The blue regions represent
lower potential and the correspondingly higher probability of occurrence of a steady state. Identifying the existence of: E and M states at S = 188,000 (S =
188K) (A); E, hybrid-E/M, and M states at S = 200,000 (S = 200K) (B); and hybrid-E/M and M states at S = 213,000 (S = 213K) (C).

the disappearance of the hybrid-E/M state is the changeover
from first- to second-order phase transition in the system’s
response curve.

Similarly, we also varied the levels of SNAIL and the threshold
of self-activation of ZEB (SI Appendix, section 9: Phase Dia-
gram with Variations in the Signal SNAIL and the Threshold for
ZEB Self Activation Levels). Reduced threshold, i.e., a stronger
self-activation, enables a monostable hybrid-E/M phase at lower
SNAIL values, while it disappears with increased threshold, i.e.,
weaker self-activation of ZEB (SI Appendix, Fig. S4). Increas-
ing SNAIL values and weakening self-activation drive the system
toward a bistable E, M phase, i.e., disappearance of E/M state.
These results suggest that a balance between the strengths of
mutual inhibition and self-activation can enable the existence of
a hybrid-E/M phenotype (32).

Discussion
Anticipating critical transitions remains an extremely challeng-
ing task in multiple scenarios, including the eutrophication of

A

C

B

D

Fig. 6. Pie diagrams representing basin stability of the system for different
values of SNAIL (S): S = 188,000 (S = 188K) (A), S = 200,000 (S = 200K) (B), S =
213,000 (S = 213K) (C), and S = 220,000 (S = 220K) (D). The percentages of 104

simulations with random initial conditions reaching a particular steady state
in a bistable/multistable region are shown. Blue, red, and yellow regions
correspond to the percentage of simulations reaching to any one of the E,
hybrid-E/M, and M states, respectively.

lakes, the crash of financial markets, and, more importantly,
the onset of diseases. The system typically displays almost
no sign of the impending transition until it happens, thus
using EWSs such as variance, autocorrelation, and conditional
heteroskedasticity can be used to forecast the critical transi-
tions, which are often catastrophic. Here, we show that these
EWSs can capture the transitions among E, M, and hybrid-
E/M phenotypes. This phenotypic plasticity drives cancer metas-
tasis and drug resistance in cancer—the cause of almost all
cancer-related deaths. Given that no unique mutational signa-
ture has been yet identified for metastasis, despite extensive
genomic efforts (23), these EWSs that can predict the onset
of these cellular transitions that govern metastasis can serve
as potentially important dynamic biomarkers. Recent efforts
have focused on identifying such dynamic biomarkers in the
context of pulmonary metastasis of hepatocellular carcinoma
(47). With more single-cell dynamic data emerging in the con-
text of epithelial–hybrid-mesenchymal transitions (48, 49), using
EWSs can help predict the tipping point of metastasis initia-
tion. Dynamic network biomarkers is a set of molecules that
show collective and strong fluctuations close to a tipping point
(47); thus, such dynamic biomarkers can be potentially identi-
fied through collecting transcriptomic signatures for epithelial–
hybrid-mesenchymal transitions using inducible systems/reporter
constructs in vitro (50, 51). EMT can be induced via vari-
ous extracellular mechanisms as well (52); thus, these dynamic
biomarkers are likely to be reflective of cellular plasticity and
adaptability—a crucial feature for the process of metastasis that
has an extremely high attrition rate, yet claims more than 90% of
all cancer-related deaths (22). Moreover, another interpretation
of tipping point in EMT can be the point of irreversibility, i.e.,
inducing EMT for a shorter duration and then withdrawal of the
EMT-inducing signal enables reversal; however, induction for
a longer timescale typically leads to irreversible EMT, possibly
due to epigenetic effects (35, 36, 53). Thus, our results indicate
the possibility of identifying EMT before the tipping point of
transition.

Cancer metastasis has been long thought to be driven solely
by individual cell migration (i.e., a M state); however, recent
studies have questioned this dogma, highlighting not only that
clustered cell migration can be possible during metastasis but
also can be the predominant driver of metastasis (54, 55). These
clusters, typically 5 to 8 cells large, can pass through capillaries
by arranging themselves transiently into a single-file chain (56)
and can contain noncancerous cells that can facilitate metas-
tasis (57). A hybrid-E/M phenotype has been associated with
such collective/clustered cell migration (58, 59); thus, our analy-
sis identifying the relatively high basin stability of the hybrid-E/M
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A B

C

DEF

Fig. 7. The phase diagram and corresponding bifurcation diagrams of the genetic circuit. (A) The phase diagram of the genetic circuit with varia-
tions in SNAIL and Z0,µ200

(threshold of ZEB’s inhibition of miR-200) levels. Each phase corresponds to either any of the monostable state or coexisting
bistable/multistable states. For example, in E, the E state is stable; in {E, hybrid-E/M}, both E and hybrid-E/M states coexist. (B–F) Bifurcation diagrams of
mRNA with variations in the level of SNAIL for different values of Z0,µ200

: 100,000 (100K) (B), 140,000 (140K) (C) , 280,000 (280K) (D), 320,000 (320K) (E), and
380,000 (380K) (F). As we move from D to F, the monostable region for hybrid-E/M state (marked by the shaded regions) increases. In B–F, stable steady
states are plotted by solid (blue) lines; unstable steady states, by dashed (red) lines.

phenotype can help explain the ability of cancer cells to form
clusters of circulating tumor cells.

Here, our analysis focused on temporal dynamics of a gene
regulatory network for EMT; however, EWSs have also been
identified in spatiotemporal dynamics, particularly in ecology
(60, 61). Thus, EWSs can also be potentially identified in a
spatially extended regulatory networks for EMT, for instance,
investigating the varying extents of EMT induction in differ-
ent parts of a tissue, as have been experimentally observed (62,
63), or identifying critical transitions in cancer–immune interplay
(64). Further, besides EMT, there are other axes of pheno-
typic plasticity in cancer, such as metabolic plasticity, switching
back and forth between a cancer stem cell (CSC) and a non-
cancer stem cell. With recent developments in identifying the
multistable dynamics of the networks regulating these transitions
(65), EWS analysis can be applied to these networks to identify
promising novel dynamic biomarkers. However, an open ques-
tion remains: can we identify the strongest and most robust signal
of critical transition, among many that might show EWSs? For
instance, during metastasis, players involved in EMT, CSCs, and
metabolic plasticity may all show EWSs and vary dynamically,
but which among these interconnected axes can be considered as
the Achilles heel of metastatic potential needs to be identified
rigorously?

The majority of the critical slowing down-based EWSs used
to predict critical transitions in natural systems involves saddle-
node bifurcation under the presence of white noise (temporally
uncorrelated noise) that perturbs the abundance of the system
(66). For a large class of systems that exhibit other types of bifur-
cations apart form the saddle node, the effectiveness of EWSs
remains largely unknown. For different types of bifurcations
(e.g., transcritical, pitchfork, supercritical Hopf bifurcation) with

diverse noise (e.g., colored [temporally correlated] noise), EWSs
do not always work reliably to forecast sudden critical transi-
tions (67). They were found to be very sensitive to the length
of pretransition time-series data and also to other decisions
like filtering bandwidth and rolling-window size (39). There also
exist systems in which bifurcations occur without critical slowing
down, such as in a structured consumer-resource model where
the upper-point equilibrium coexists with a lower-limit cycle (68),
the occurrence of basin-boundary collisions (69) and as a result
in these systems, EWSs do not work properly. In fact, in gen-
eral, EWSs work well for the situations when critical slowing
down and critical transition cooccur (67). Although robustness
of EWSs has been successfully shown in some cases (3, 66), a
detailed analysis of their effectiveness is still an open challenge
(18, 67, 70).

In summary, our analysis strongly indicates the presence of
EWSs during epithelial–hybrid-mesenchymal transitions—a cen-
tral motor of cellular plasticity during cancer metastasis and
the emergence of therapy resistance (71). We show that many
robust measures of EWSs—increased variance, autocorrelation,
and conditional heteroskedasticity—vary dynamically as cells
transition among these 3 phenotypes. Our results also identify
increased basin stability of a hybrid-E/M phenotype—considered
to be the fittest for metastasis—and suggest ways to elude tran-
sitions into the hybrid-E/M state, potentially restricting cancer
spread.

Materials and Methods
Numerical Simulations and Bifurcation Diagrams of the Deterministic Sys-
tem. We have used Matlab (R2015b) for numerical simulations of the
deterministic system (Eq. 2). The codimension–one bifurcation diagrams
involving 2 or more saddle-node bifurcation points were obtained using
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the continuation package MATCONT (72). The 2-parameter bifurcation
diagram (i.e., the phase diagram) with variations in the parameters
SNAIL and miR-200/ZEB was obtained through the calculations of multiple
codimension–one bifurcation points. Later, the bifurcation curves separat-
ing monostable, bistable, and tristable existence regions of the steady
states were presented by connecting multiple codimension–one bifurcation
points.

Stochastic System and Monte Carlo Simulations. The time series of ZEB
mRNA levels was generated from the probabilistic model through Monte
Carlo simulation (31), which incorporates the intrinsic cellular noise. The
algorithm considers each of the reaction events as individual realiza-
tions of the Markov process. The time and species numbers are updated
stochastically by choosing a random reaction event. The miR (µ)-based
chimeric tristable miR-200/ZEB circuit is simulated by realizing 10 reaction
events as a function of the number of SNAIL molecules. The reaction events
are listed in SI Appendix, Table S4. All biochemical parameters are based on
ref. 33, and those are listed in SI Appendix, Tables S1–S3 for completeness.
Both the time and the parameter (number of SNAIL molecules) are varied
together to obtain the time series of ZEB mRNA levels that carry the signa-
ture of critical slowing down while shifting to an alternative stable state.
In particular, we perform our simulations for a period of 20 d, along with
the simultaneous variations in the number of SNAIL molecules, that ranges
from 150,000 to 250,000 molecules. The chosen time period and the range
of SNAIL molecules are consistent in the context of the EMT period (33).

More details of the simulation are presented in SI Appendix, section 3: The
Stochastic Model.

Statistical Analysis of CSD Indicators. In the stochastic time series analyzed
here, we first visually identified shifts between E-to-E/M state and M-
to-E state. Then we took time-series segments (the regions marked with
boxes in Figs. 2 and 3) before a critical transition and examined them for
the presence of EWSs. For stationarity in residuals, we used the Gaussian
detrending before performing any statistical analysis of the data. The resid-
uals were then used to calculate the EWS variance, AR(1), and conditional
heteroskedasticity. The time-series analysis has been performed using the
“Early Warning Signals Toolbox” (http://www.early-warning-signals.org). A
concurrent rise in the variance and/or AR(1) forewarn an upcoming critical
transition. The indicator conditional heteroskedasticity also works similarly
(for details, see SI Appendix, section 4: Early Warning Indicators).

Data Availability. Code and data are available in the Zenodo repos-
itory (73).
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